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Abstract

The complete solution space of a piezoelectric material is the direct sum of several orthogonal eigenspaces, one for
each distinct eigenvalue. Each one of the 14 different classes of piezoelectric materials has a distinct form of the general
solution, expressed in terms of the eigenvectors of the zeroth and higher orders and a kernel matrix containing analytic
functions. When these functions are chosen to be logarithmic, one obtains, in a unified way, Green�s function of the
infinite space as a single 8 · 8 matrix function G1 for the various load cases of concentrated line forces, dislocations,
and a line charge. This expression of Green�s function is valid for all classes of nondegenerate and degenerate materials.
With an appropriate choice of the parameters, it reduces to the solution of a half space with concentrated (line) forces at
a boundary point, and with dislocations in the displacements. As another application, eigenvalues and eigensolutions
are obtained for the bimaterial interface crack problem.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of piezoelectricity in Part I of this paper yields 11 distinct types of eigenvalues. They
depend on the multiplicity, and on whether the eigenvalues are normal, abnormal, or superabnormal.
A p-tuple eigenvalue determines a p-dimensional eigenspace containing p eigenvectors of the various
orders. Taking all possible combinations of the different types of eigenvalues with Im[l] > 0, and with
a total multiplicity equal to 4, one obtains 14 distinct classes of piezoelectric materials, including four that
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are nondegenerate. For each class, the base matrix Z is nonsingular, i.e., consisting of eight independent
eigenvectors of the zeroth and higher orders. General solutions of all classes of materials are given here in
a concise, unified manner, in terms of Z and a kernel matrix which contains four arbitrary analytic
functions.

The algebraic structure of the solution space of linear piezoelectricity is formally analogous to those of
the related problems of anisotropic elasticity (without piezoelectric effects) and unsymmetric anisotropic
plate theory, although the dimensions and properties of the solution spaces are generally different in differ-
ent theories. One has the same formal expressions of the pseudometrics, the projection operators into the
various eigenspaces, and of the intrinsic tensors, but some intrinsic tensors cease to be positive definite in
piezoelectricity unless properly modified.

Choosing the analytic functions in the kernel matrix to be the logarithmic function, one obtains Green�s
function of the infinite space with line loads, dislocations and line charge at the origin. Analytical solutions
are also obtained for a half space under the same loads applied at a boundary point, and for a bimaterial
interface crack, also regardless of material degeneracy. Solutions to other problems, such as Green�s func-
tions of a half space with various types of boundary conditions, and of an infinite space with an elliptical
hole, may be obtained in a manner similar to the corresponding problems in 2-D elasticity (Yin, 2004) and
unsymmetric laminated plate theory (Yin, in press a, b).
2. Orthogonality and separability of eigenspaces

2.1. Orthogonality

The analysis of Part I shows that all eigensolutions of the various orders have the form described by The-
orem 4. Differences in the type of eigenvalues, i.e., normal, abnormal and superabnormal, merely affect the
choice of the function g(l), which may be a column ofW(l), or of I3, or one of the vector functions in Eq.
(I-3.10) (Notice that here and in the following, when referring to equations in Part I of this paper, the equa-
tion numbers are preceded by the prefix I-ffi). Let n = (Jg)(k)(l) and n 0 = (Jg)(l)(l 0) be eigensolutions asso-
ciated with two distinct eigenvalues l and l 0. Then the following two set of equations, when evaluated
respectively at l and l 0,
Mg ¼ . . . ¼ ðMgÞðkÞ ¼ 0, Mg ¼ . . . ¼ ðMgÞðlÞ ¼ 0, ð2:1a;bÞ

are valid provided that the order of differentiation k is smaller than the multiplicity of l and l is smaller than
the multiplicity of l 0. Furthermore,
sn,n0t ¼
X
06p6k

X
06q6l

ðk,pÞðl,qÞ gðk�pÞðlÞ
� �T

sJðpÞðlÞ,JðqÞðl0Þtgðl�qÞðl0Þ:
Substituting Eq. (I-4.3) into the last equation, and using (2.1a,b), one obtains sn,n 0b = 0. This establishes
the orthogonality of the eigenvectors associated with distinct eigenvalues:

Theorem 1. If n and n 0 are eigenvectors associated with two distinct eigenvalues, then, irrespective of the order

and the type of each eigenvalue, one has sn,n 0b = 0. Hence the eight-dimensional complex vector space is the

direct sum of a number of orthogonal eigenspaces, one for each distinct eigenvalue.

For each zeroth-order or high-order eigenvector of a multiple eigenvalue l0, the complex conjugate vec-
tor is an eigenvector of the conjugate eigenvalue �l0. While a zeroth-order solution is characterized com-
pletely by a single eigenvector, v = fn, higher-order eigensolutions generally involve all eigenvectors of
the same and lower orders belonging to that eigenspace.
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2.2. Separability of the eigenspaces of abnormal and superabnormal eigenvalues

Notice that the pseudometrics of Eqs. (I-5.11a,b) and (I-5.16a) are block-diagonal matrices. Therefore,
for every abnormal eigenvalue l0 of multiplicity p considered in Theorems 8 and 9 of Part I, the eigenspace
is the direct sum of two orthogonal subspaces of dimensions p1 and p2 = p � p1 possessing, respectively,
eigensolutions of increasing orders varying from 0 to p1 �1 and from 0 to p2 � 1. Orthogonality implies
that the eigensolutions of the two groups are uncoupled. These two subspaces of the eigenspace are effec-
tively two separate eigenspaces that happen to have the same eigenvalue.

The pseudometric of a double abnormal eigenvalue as given by Eq. (I-5.4a) may be reduced to a diag-
onal matrix by using the similarity transformation
s ¼
1 W 0

13=W
0
33

0 1

� �
For a triple superabnormal eigenvalue, there are three independent eigenvectors of the zeroth order. The
pseudometric of Eq. (I-5.17) may be reduced to a diagonal matrix by using an appropriate 3 · 3 similarity
transformation s, and the transformed eigenvectors are still of the zeroth order. For a quadruple superab-
normal eigenvalue, the similarity transformation also reduces the 3 · 3 submatrixM 0(l0) in Eq. (I-5.19) to a
diagonal matrix, and the three zeroth-order eigenvectors remain zeroth-order under the transformation.
The fourth eigenvector, of the first order, is unchanged under s. Hence the new pseudometric is block diag-
onal, whose only nonzero elements are x11, x44, x14 = x41, x22 and x33. One has the following theorem:

Theorem 2. The eigenspace of an abnormal-a eigenvalue of multiplicity p is separated into two orthogonal

subspaces of dimensions 1 and p � 1. The eigenspace of an abnormal-b eigenvalue is separated into two

orthogonal subspaces of dimensions 2 and p � 2. The eigenspace of a superabnormal eigenvalue is separated

into three orthogonal subspaces of dimensions 1, 1 and p � 2. The eigenspace of a normal eigenvalue is

irreducible.

Notice that in the abnormal and superabnormal case, the similarity transformation s replaces a higher-order
eigenvector by a linear combination of that eigenvector with the lower-order eigenvectors. The lower order
eigenvectors remain unchanged in order, so that the hierarchy of orders of all eigensolutions in the eigenspace
is also unchanged as the pseudometric is reduced to the block-diagonal form by the transformation s. Such a
similarity transformation cannot be found to decompose the pseudometrics of multiple normal eigenvalues as
given by Eqs. (I-4.18b,c,d). Hence the eigenspace of a multiple normal eigenvalue is irreducible.

Let X be the p-dimensional eigenspace of a normal eigenvalue, or a p-dimensional irreducible subspace in
the eigenspace of an abnormal or superabnormal eigenvalue. Then X contains p independent eigenvectors
n1, . . . ,np of the orders 0, . . . ,p � 1, respectively. The k th order eigensolution vk+1 is a linear combination of
the eigenvectors n1, . . . ,nk and, according to Eqs. (I-4.14b), (I-5.8b), (I-5.9b), (I-5.13b), (I-5.15b), none of
the coefficients of the lower-order eigenvectors in this combination may vanish unless the analytic function
f is a polynomial function of degree equal to or lower than k. Hence every higher-order eigensolution intrin-
sically involves the modes of lower-order eigenvectors that belong to the same irreducible subspace. The
relation is intrinsic, because it is determined by the material, and independent of the external loads or
boundary conditions.
3. Mathematical structure of the solution space

Let {l}? denote the sequence of distinct eigenvalues with positive imaginary parts, and let {l} be the
complete sequence obtained by joining {l}? and its complex conjugate sequence f�lg?. Then each element
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lk or �lk of {l} is associated with an eigenspace Xk or Xk. We also use the same symbol Xk to denote the
matrix composed of the eigenvectors in the space Xk. Then
sXk,Xjt ¼ 0 if k 6¼ j and sXk,Xjt ¼ 0 for arbitrary k and j, ð3:1Þ

where
sXk,Xjt � XT
k IIXj, II �

04
4 I4

I4 04
4

� �
,

i.e., the eigenspaces are all mutually orthogonal. It was shown in Part I that the pseudometric xk = sXk,Xkb
is a nonsingular matrix for every type of eigenvalue. Let Z? be the 8 · 4 matrix obtained by joining all
matrices Xk, and let
Z � Z?,Z?
� �

, X? � sZ?,Z?t ¼< xk > , X � sZ,Zt ¼ ZTIIZ ¼< X?, �X? > , ð3:2a;b;cÞ
where <xk> stands for the block-diagonal matrix with the submatrices xk as the diagonal blocks, and
< X?, �X? > is composed of two diagonal blocks X? and �X?. Then
Det½X� ¼j Det½X?�j2 ¼
Y

k
j Det½xk�j2 6¼ 0, ð3:3Þ
i.e., X = ZTIIZ is a nonsingular matrix. Eq. (3.2c) then implies that Z is also nonsingular. Hence the eight
columns of Z are independent eigenvectors, and the eight associated eigensolutions combine to form the
general solution of the piezoelectric material.

The inverse matrix of X is also block diagonal, and may be expressed in terms of the inverses of xk and
�xk:
X�1 ¼< X�1
? , �X

�1

? >¼<< x�1
k > , < �x�1

k >>: ð3:4Þ
Eq. (3.2b) gives the explicit analytical expression of Z�1:
Z�1 ¼ X�1ZTII: ð3:5Þ

Z�1 appears frequently in the expressions of Green�s functions and singularity solutions including cracks
and multi-material singularities.

For each Xk and Xk, consider the 8 · 8 symmetric matrices
Xkx
�1
k X

T
k ¼ Fk þ iGk, Xkx

�1
k X

T

k ¼ Fk � iGk: ð3:6a;bÞ

Fk and Gk are the real and imaginary parts of Xkx

�1
k X

T
k and hence they are also symmetric. Postmultiplying

Eq. (3.6a) by IIXk and using Eq. (2.1), one obtains
Xk ¼ ðFk þ iGkÞIIXk: ð3:7Þ

Therefore, the linear transformation (Fk + iGk)II maps every vector in Xk into itself. On the other hand, if
n 0 is an eigenvector associated with a different eigenvalue, then it is orthogonal to all columns of Xk, so that
Eq. (3.6a) yields
ðFk þ iGkÞIIn0 ¼ 0: ð3:8Þ

Therefore, (Fk + iGk)II is the projection operator into the eigenspace of lk, i.e., any eight-dimensional vec-
tor v may be decomposed as v = (Fk + iGk)IIv + v*, where the first part belongs to the eigenspace and v* is
orthogonal to it. Similarly, (Fk� iGk)II is the projection operator into the eigenspace of �lk. This yields the
decomposition of the identity matrix into orthogonal projections:



W.-L. Yin / International Journal of Solids and Structures 42 (2005) 2669–2687 2673
I8 ¼
X
k

ðFk þ iGkÞIIþ
X
k

ðFk � iGkÞII ¼ 2
X
k

Fk

 !
II,
i.e.,
2
X
k

Fk

 !
¼ II, ð3:9Þ
where the summation extends over all eigenvalues with Im[lk] > 0.
Combining Eqs. (3.7) and (3.8), one has (Fk + iGk)IIZ = Zk, where Zk is the 8 · 8 matrix obtained from

Z by setting all column vectors to 0 except those belonging to Xk, which are left unchanged. Then
Fk þ iGk ¼ ZkZ
�1II ¼ ZkX

�1ZT: ð3:10Þ

These expressions allow direct determination of Fk and Gk in terms of the base matrix Z.

Summing Eq. (3.6) over all eigenvalues with positive imaginary parts, one obtains
Z?X�1
? Z

T
? ¼

X
k

Fk þ i
X
k

Gk: ð3:11Þ
Hence
2Re Z?X�1
? Z

T
?

� �
¼ 2

X
k

Fk

 !
¼ II, ð3:12aÞ
The various equalities relating the matrices Fk and Gk in the theory of coupled anisotropic plates (see Eqs.
(64)–(66) in Yin, 2003a) are also formally valid in the present theory of piezoelectricity. The equalities imply
the relation C IIC II = �I8 for the matrix C, which is defined by Eq. (3.12b) and has special importance to
the infinite space and half-space domains. Equivalently,
C�1 ¼ �IICII: ð3:13Þ

From Eqs. (3.2), (3.11) and (3.12), one obtains
Z < X�1
? , �X

�1

? > ZT ¼ ZX�1ZT ¼ II, Z < X�1
? , � �X

�1

? > ZT ¼ iC: ð3:14a;bÞ

Postmultiplication of the last equation by �iII yields
CII ¼ �iZ < X�1
? , � �X

�1

? > ZTIIZZ�1 ¼ Z < �iI4,iI4 > Z�1: ð3:15Þ

The last equation shows that C is completely determined by the matrix of eigenvectors. The equation is par-
ticularly useful in the following analysis for calculating C from Z.

As in the two related theories of anisotropic elasticity and coupled anisotropic plates, the eigenvectors
transform in the following manner
Z� ¼ ZQ8, Q8 ¼< Q2,I2,Q2,I2 > ð3:16a;bÞ

under a coordinate transformation from {x,y}T to {x*,y*}T:
x�

y�

� �
¼ Q2

x

y

� �
, where Q2 �

cos h sin h

� sin h cos h

� �
ð3:17Þ
The matrix X remains unchanged under the coordinate transformation, whereas C and its submatrices
transform according to tensorial rules:
C� ¼ Q8CQ
T
8 , L� ¼ Q4LQ

T
4 , H� ¼ Q4HQ

T
4 , S� ¼ Q4SQ

T
4 , Q4 � < Q2,I2 >: ð3:18Þ
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The matrices Gk and their 4 · 4 submatrices satisfy the same tensorial transformation rules.
Next, we consider an affine transformation in the eigenspace of an eigenvalue lk, characterized by a non-

singular complex matrix sk:
X�
k ¼ Xksk: ð3:19Þ
The pseudometric transforms as follows
x�
k ¼ sX�

k ,X
�
kt ¼ sTk sXk,Xktsk ¼ sTk xksk, ð3:20Þ
and x�
k has the inverse matrix satisfying
X�
kx

��1
k X�T

k ¼ Xkx
�1
k X

T
k ¼ Fk þ iGk: ð3:21Þ
If the affine transformation sk in the eigenspace of lk is extended to an affine transformation s of the full
eight-dimensional space such that s preserves every eigenspace, then Eqs. (3.20) and (3.21) are still valid
after replacing sk by s. Hence we have the following theorem:

Theorem 3. The projection operators (Fk + iGk)II are unchanged under any affine transformation that

preserves all eigenspaces. The matrices Fk, Gk, C and their 4 · 4 submatrices satisfy the tensorial

transformation rules of Eq. (3.18). These tensors are invariant under affine transformations that preserve the

eigenspaces.

The real, symmetric matrices Fk, Gk and C are called intrinsic tensors because they are completely deter-
mined by the constitutive parameters. Unlike the pseudometrics and X, they are not dependent on the par-
ticular choice of the eigenvectors, i.e., they may be obtained from Eqs. (3.10) and (3.15) using any set of
independent eigenvectors, and the results are always the same.

Theorems 1–3 are spectral theorems. They describe the spectral decomposition of the eight-dimensional
complex vector space into orthogonal eigenspaces associated with distinct eigenvalues. The intrinsic geo-
metrical structure of the space is determined by the pseudometrics, but the pseudometrics are not unique
and cannot be made unique by normalization, because the complex space has no length or distance mea-
sure. However, the projection operators of Eqs. (3.6)–(3.8) determine the (Fourier) decomposition of every
complex vector into its spectral components in the various eigenspaces. Eqs. (3.12a) show (II + iC)/2 as the
spectral sum of Fk + iGk.

In Part I of this paper, the pseudometric xk has been determined for eigenvalues of all types and mul-
tiplicities. xk was shown to be nonsingular, and the explicit expression of the inverse matrix x�1

k is easily
obtained. Then Eq. (3.4) gives X�1, and Eqs. (3.10) and (3.15) yield analytical expressions of Fk, Gk and C.
The final expression of Gk may be given for each eigenspace in terms of the two functions d(l) and
J(l)W(l)J(l)T and their l-derivatives of the various orders (all evaluated at l = lk), as shown in the pre-
vious works on plane elasticity and coupled anisotropic plates (Yin, 2000a,b, 2003a). Such expressions have
the merit of involving only material matrices, i.e., they do not involve quantities that vary with a different
choice of the eigenvectors. From a practical viewpoint, however, Eq. (3.10) is more convenient and no less
satisfactory. It too gives the exact and explicit expressions of Fk and Gk and, in addition, allows them to be
easily computed from matrix products, without the need to evaluate the derivatives of d(l) and
J(l)W(l)J(l)T.

In 2-D anisotropic elasticity, the base matrix Z and the intrinsic tensor C have the dimension 6 · 6, and it
is customary to express Z and C in terms of 3 · 3 submatrices (the submatrices of C are often called Bar-
nett–Lotte tensors though one of them already appeared in Stroh�s paper, 1958). In the theory of coupled
anisotropic plates (Yin, 2003a) and in the present theory of piezoelectricity, the symmetric matrices Gk and
C may all be separated into 4 · 4 submatrices as follows:
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C � �L ST

S H

" #
� 2

X
k

Gk, Gk �
�Lk ST

k

Sk Hk

" #
ð3:22a;bÞ
Then Lk, Hk, L and H are all real, symmetric matrices and Eq. (3.13) implies
HL� SS ¼ LH� STST ¼ I4, LS ¼ �ðLSÞT, SH ¼ �ðSHÞT: ð3:23a;b;cÞ

Hence LS and SH are skew-symmetric matrices while Sk and S are generally not symmetric. L and H are
non-singular, and L < 1,1,1,�1> is positive definite (see Section 6). By deleting the fourth rows and the
fourth columns of L, H and S, one obtains the well-known Barnett–Lothe tensors in 2-D anisotropic elas-
ticity (Ting, 1996).

Let Xk and Z be expressed as follows in terms of submatrices of row dimension 4:
Xk ¼
Bk

Ak

� �
, Z ¼ B B

A A

" #
: ð3:24Þ
Then Eqs. (3.6) and (3.22) yield
Lk ¼ Re½iBkx
�1
k B

T
k �, Hk ¼ Re½�iAkx

�1
k A

T
k �, Sk ¼ Re½�iAkx

�1
k B

T
k �, ð3:25Þ
whereas Eq. (3.16b) becomes
L ¼ 2iBX�1
? B

T, H ¼ �2iAX�1
? A

T, S ¼ �ið2AX�1
? B

T � I4Þ: ð3:26Þ

The relation CIIZ? = �iZ? yields (ST + iI4)B = LA and (S + iI4)A = �HB. Hence if C is known, then B
and A may be expressed in terms of each other:
A ¼ �ðS� iI4ÞL�1B, B ¼ ðST � iI4ÞH�1A, ð3:27Þ
so that the base matrix Z is completely determined by C and either B or A.
Materials with certain types of symmetry may possess equilibrium solutions in which some groups of

eigensolutions do not contribute. For example, the in-plane and out-of-plane solutions of isotropic elastic
materials are uncoupled. Each one of such solutions is unaffected by the intrinsic tensors of the nonpartic-
ipating eigenspaces, and its analytical results depend only on the eigenvectors and intrinsic tensors Gk of the
remaining eigenspaces Xk.
4. Material classification; general solution

4.1. Mathematically distinct types of eigenvalues

In Part I of the paper, a complete set of eight independent eigensolutions is obtained explicitly for every
type of piezoelectric material. By combining the four complex conjugate pairs of eigensolutions, one ob-
tains the general solution of two-dimensional equilibrium problems of that type of material. The general
solution provides the foundation for theoretical analysis of piezoelectricity, in the same way that Goursat�s
representation of biharmonic functions in terms of a pair of complex analytic functions is fundamental to 2-
D isotropic elasticity. It is also indispensable in most of analytical and numerical methods for solving
boundary value problems, including power series, mapping of the domain boundary to a unit circle, ana-
lytical continuation, the integral equation approach and the boundary element method. The boundary ele-
ment method requires, as a starting point, Green�s function of the infinite domain. For elastic materials
without piezoelectric effects, it has been found that material degeneracy significantly affects the singular part
of Green�s function, resulting in a changed angular variation of the singularity but not in the power of sin-
gularity (Yin, 2004).
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In 2-D anisotropic elasticity, there are five distinct classes of materials, each requiring a different repre-
sentation of the general solution (Yin, 2000a). These five classes of materials correspond to five possible
combinations of five types of eigenvalues (normal eigenvalues with multiplicities 1, 2 and 3, and abnormal
eigenvalues with multiplicities 2 and 3). In the theory of unsymmetric anisotropic plates, there are 11 dis-
tinct types of plates obtained by combining eigenvectors of eight different types: normal eigenvalues with
multiplicities 1, 2, 3 and 4; abnormal eigenvalues with multiplicities 2, 3 and 4, and superabnormal eigen-
values (Yin, 2003b). In the present theory of two-dimensional piezoelectricity, the number of mathemati-
cally distinct types of eigenvalues is 11, as listed in Appendix B of Part I.

If two eigenvalues belong to the same one of the 11 types, then their eigenspaces have the same mathe-
matical structure, and the eigensolutions have the same analytical forms of expression. However, each dis-
tinct type of eigenvalues in the mathematical sense may include several physically different cases. For
example, for an eigenvector n = J(l0)W(l0)q associated a simple eigenvalue l0, the meaning depends on
the particular nonvanishing column W(l0)q of the matrix W(l0) (where q denotes the corresponding col-
umn of I3). For a double abnormal eigenvalue l0 the two eigenvectors have the general expressions J(l0)g1
and J(l0)g2, where g1 and g2 are given by Eqs. (I-3.10a,b,c), respectively, if the first, second and the third
diagonal element of M(l0) does not vanish. These three cases yield, respectively, eigensolutions that show
(a) no piezoelectric effect in antiplane deformation; (b) no piezoelectric effect in in-plane deformation and
(c) no mechanical coupling between in-plane and anti-plane deformation. Thus, eigenvalues of the same
mathematical type may correspond to different physical cases.
4.2. Classification of piezoelectric materials as two-dimensional media

The 2-D general solutions of various types of piezoelectric materials are determined by all possible com-
binations of the 11 distinct types of eigenvalues with a combined multiplicity equal to 4 (counting only
eigenvalues with positive imaginary parts). An eigenvalue with multiplicity p = 3 can only combine with
a simple eigenvalue, while one with p = 4 needs no other. Hence there are as many different types of eigen-
values with p P 3 as there are classes of materials that possess such eigenvalues. A double abnormal eigen-
value may combine with two simple eigenvalues, or with one double normal eigenvalue, or with another
double abnormal eigenvalue. Finally, there are five classes of materials whose eigenvalues are all normal
(one quadruple, one triple plus one simple, one double plus two simple, two double, and four simple).
Hence the total number of distinct classes of piezoelectric materials is 14.

These 14 classes are shown below, characterized by the respective sets of eigenvalues. The symbol 1ffi
stands for a simple eigenvalue; Npffi for a normal one of multiplicity p; A2ffi for a double abnormal eigen-
value; Apa,ffi for an abnormal-a eigenvalue of multiplicity p (p = 3 or 4) and Apbffi for an abnormal-b
eigenvalue. Finally, S300 and S400 denote, respectively, superabnormal eigenvalues of multiplicities 3 and
4. The symbols for different eigenvalues are separated by dashes. The degree of degeneracy is 4 minus
the number of zeroth-order eigensolutions in Z?.

Nondegenerate materials: (1) 1-1-1-1; (2) 1-1-A2; (3) A2-A2; (4) 1-S3.
Degenerate of degree 1: (5) 1-1-N2; (6) N2-A2; (7) 1-A3a; (8) 1-A3b; (9) S4.
Degenerate of degree 2: (10) 1-N3; (11) N2-N2; (12) A4a; (13) A4b.
Degenerate of degree 3: (14) N4.

4.3. Kernel matrices and general solutions of 14 classes of piezoelectric materials

For the 11 distinct types of eigenvalues, we define the respective differential operators
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D1 � I1, DN2 �
1 d=dl
0 1

� �
, DN3 �

1 d=dl d2=dl2

0 1 2d=dl
0 0 1

2
4

3
5,

DN4 �

1 d=dl d2=dl2 d3=dl3

0 1 2d=dl 3d2=dl2

0 0 1 3d=dl
0 0 0 1

2
664

3
775,

DA2 � I2, DA3a �
1 0 0
0 1 2d=dl
0 0 1

2
4

3
5, DA4b �

1 0 0 0
0 1 2d=dl 3d2=dl2

0 0 1 3d=dl
0 0 0 1

2
664

3
775,

DA3a �
1 d=dl 0
0 1 0
0 0 1

2
4

3
5, DA4b �

1 d=dl 0 0
0 1 0 0
0 0 1 3d=dl
0 0 0 1

2
664

3
775,

DS3 � I3, DS4 �

1 0 0 0
0 1 0 0
0 0 1 3d=dl
0 1 0 1

2
664

3
775 ð4:1Þ
Then all equilibrium solutions that belong to the eigenspace Xk of each one of the 11 types of eigenvalues
may be expressed by
v ¼ Xkkf kkck?, ð4:2aÞ

where ck? is an arbitrary complex constant vector of dimension p, and kfkk denotes the following expression
with the right-hand side evaluated at the eigenvalue lk:
kf kk ¼ Dk < f1ðxþ ly,lÞ,::,fpðxþ ly,lÞ >: ð4:2bÞ

Here the differential operator Dk is the one in Eq. (4.1) appropriate to lk, and the symbol <f1 . . . , fp> de-
notes a diagonal matrix with p arbitrary analytic functions as the diagonal elements.

For each one of the 14 classes of piezoelectric materials, the 2-D general solution is obtained by com-
bining the solutions of Eq. (4.2) of all eigenspaces belonging to Z?. Let the constant vectors ck? be joined
together to form a four-dimensional vector c?, and let the latter be joined with its complex conjugate vector
to form the eight-dimensional vector c:
c � fcT?,�cT?g
T
: ð4:3Þ
Furthermore, let the matrices kfkk be joined to form a 4 · 4 block-diagonal matrix kfk?, and define the 8 · 8
kernel matrix
kf k �< kf k?,# >: ð4:4Þ

Then the general solution of 2-D piezoelectricity is given by v = 2Re[Z?kfk?c?] or, equivalently,
v ¼ Zkf ðxþ ly,lÞkc: ð4:5Þ

In Eq. (4.4) and in the following, <U,#> denotes the block-diagonal matrix having U and its complex con-
jugate matrix as the two diagonal blocks.

The elements of the constant vector cmay be absorbed into the arbitrary analytic functions. However, in
many applications, all analytic functions in the kernel matrix differ only by constant multiplication factors.
Then it is convenient to use one single function plus the vector c. Eqs. (3.2a) and (4.3) imply that
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h � Zc ¼ Z?c? þ Z?�c? is real. Hence Eq. (4.5) may be recast in the following form in terms of a real con-
stant vector h:
v ¼ Zkf ðz,lÞkZ�1h, z � xþ ly, ð4:6Þ

Indeed it is easily verified, using (3.2a), (3.4), (3.5) and (4.4), that Zkf(z,l)kZ�1 is real for arbitrary complex
functions f.

For any two functions f and g, Eqs. (4.1) and (4.2) imply that
kfgkk ¼ kf kkkgkk: ð4:7Þ

The proof follows from using the various differential operators in Eq. (4.1), and is not trivial unless lk is a
simple eigenvalue. From Eq. (4.7) it is easily seen that kf gk? = kfk?kgk?. Hence
kfgk ¼ kf kkgk: ð4:8Þ
Taking the gradient of Eq. (4.5), one obtains
v,x ¼ f�sxy ,� ry ,� syz,� Dy ,ex,v,x,w,x,� ExgT ¼ Zkf ,zkZ�1h, ð4:9aÞ

v,y ¼ frx,sxy ,sxz,Dx,u,y ,ey ,w,y ,� EygT ¼ Zklf ,zkZ�1h ¼ Zklkkf ,zkZ�1h: ð4:9bÞ
Define the diagonal matrix
D � h1,1,1,� 1i: ð4:10Þ
Eq. (4.9a) becomes
fex,v,x,w,x,Ex,sxy ,ry ,syz,� DygT ¼ hD,� DiIIZkf ,zkZ�1h:
Taking the scalar product with (4.9b), one obtains twice the energy density function
2U 0 ¼ rxex þ ryey þ sxycxy þ sxzw,x þ syzw,y þ DxEx þ DyEy ¼ fTHf, ð4:11aÞ

H � hD,� DiZklkZ�1II ¼ hD,� DiZklkX�1ZT,f � IIZkf ,zkZ�1h: ð4:11b;cÞ
Notice that the real vector function IIf differs from the complex function v only in the replacement of f by
f,z. The real matrix H depends on the material parameters only, and it is required to be positive definite. It
may be expressed as the following spectral sum:
H ¼ hD,� Di
X
k

ðXkklkkx�1
k X

T
k þ Xkk�lkk �x�1

k X
T

k Þ: ð4:12Þ
Since only the symmetric part of H affects the energy function, one may replace H in Eq. (4.11a) by
ðH þ HTÞ=2.

If the material is nondegenerate (including the case of four distinct eigenvalues l1, l2, l3 and l4), then
the kernel matrix kfk is diagonal, and Z contains no higher-order eigenvectors. Then the general solution
reduces to the simple sum
v ¼ 2Re
X
16k64

fkðxþ lky,lkÞnk

" #
, ð4:13Þ
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and Eq. (4.12) becomes
H ¼ hD,� Di
X
k

ðlkXkx
�1
k X

T
k þ �lkXk �x

�1
k X

T

k Þ ¼ hD,� Di
X
k

flkðFk þ iGkÞ þ �lkðFk � iGkÞg

¼ 2hD,� Di
X
k

fRe½lk�Fk � Im½lk�Gkg: ð4:14Þ
5. Two-dimensional Green’s function of the infinite space

As an application of the general solution of Eq. (4.4), we consider the 2-D equilibrium solution v of an
infinite piezoelectric medium that satisfies the requirements:

(i) the stress field and electric field vanish at infinity;
(ii) v has a constant discontinuity v0 when crossing the negative x-axis, i.e., in polar coordinates,
½v� �
I

dv ¼ vðr,pÞ � pðr,� pÞ ¼ v0, ð5:1Þ
where the integral is along a closed path encircling the origin in the counterclockwise sense. We let
v ¼ ð2pÞ�1
G1v0: ð5:2Þ
Then the matrix function (2p)�1 G1 is called Green�s function of the infinite space with a line singularity
along the z-axis through the origin, and the constant vector v0 is called the strength of singularity. These
discontinuity conditions imply that the piezoelectric medium is subjected at (x,y) = (0,0) to concentrated
line forces in three coordinate directions, a line charge, line dislocation of the displacements, and line dis-
continuity of the electric potential. By setting all analytic function in the kernel matrix to
f ðz,lÞ ¼ �i log½z�, z � xþ ly, ð5:3Þ
Eq. (4.5) yields
v ¼ Zk � i log½z�kc: ð5:4Þ

On the positive x-axis, the kernel matrix k�i log[z]k reduces to a diagonal matrix, irrespective of the type of
material, since l-differentiation of log[z] generates the factor y. On the upper and lower sides of the negative
x-axis, the kernel matrix is diagonal and has the values h�i(log[r] + ip)I3,#iand hi(log[r] � ip)I3,#i, respec-
tively, since l has a positive imaginary part. Consequently, as one crosses the negative x-axis from the lower
side to the upper side, k�i log[x + ly]k has a constant jump equal to 2pI8. Hence Eq. (5.4) has a disconti-
nuity equal to 2p Zc. Let c = (2p)�1Z�1v0. Then Eqs. (5.2) and (5.4) yield two-dimensional Green�s function
of the infinite space
ð1=2pÞG1 � ð1=2pÞZk � i log½xþ ly�kZ�1: ð5:5Þ
This expression is valid for all piezoelectric materials regardless of degeneracy. For degenerate materials, Z
contains higher order eigenvectors, and the kernel matrix contains off-diagonal elements resulting from the
application of the differential operators as defined by Eq. (4.1) for the various types of eigenvalues. Green�s
functions associated with all types of line discontinuities, including the line forces, dislocation of displace-
ments, and discontinuities of the electric field, are included in a unified manner in one single expression.

Eq. (4.4) for the general solution and Eq. (5.5) for Green�s function of the infinite space are formally
identical to the corresponding expressions in anisotropic elasticity (Yin, 2004) and coupled anisotropic
plate theory (Yin, in press a). However, the 8 · 4 matrix Z? in the present theory may contain zeroth-order
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eigenvectors that require different expressions such as described in Theorems 7–10 of Part I, and the kernel
matrix may involve new differential operators as shown in Eq. (4.1).

Using Eq. (3.15), one may rewrite Eq. (5.5) as
G1 ¼ log½r�CIIþ CIIZk log½cos h þ l sin h�kZ�1: ð5:6Þ
Hence Green�s function of the infinite space is the sum of two parts, one depending only on r and the other
only on h. Notice that it is easy to invert the block-diagonal matrix X, as shown in Eq. (3.4). Then Z�1 in
Eqs. (5.5) and (5.6) is easily obtained by matrix multiplication: Z�1 = X�1ZT II, and direct inversion of the
8 · 8 matrix Z is avoided.

Taking the gradient of Eq. (5.5), and making suitable combinations, one obtains the following solution
associated with the strength of singularity v0
f�srh,� rh,� shz,� Dh,er,uh,r,crz,� ErgT ¼ ð1=2prÞQ8GIIv0, ð5:7Þ
where Q8 was defined by Eq. (3.16b). Hence all components of Eq. (5.7) have the same simple pattern and
vary sinusoidal in h. Other components of the stress, strain and electric fields generally have complicated h-
dependence due to the complex argument cosh + lk sinh.
6. A half space with concentrated line loads or dislocations at a boundary point

From Green�s function G1 of the last section, one may easily obtained a derived result for a half space
y P 0, with traction-free boundary condition on y = 0 except for concentrated line loads or dislocation at a
boundary point which is taken to be the origin of the (r,h) coordinates.

Using Eqs. (5.6), (3.13) and (3.15), one obtains the boundary values of G1:
G1 ¼
log½r�GII on h ¼ 0

log½r�GIIþ pI8 on h ¼ p

�
ð6:1Þ
Let
v ¼ ð1=2pÞG1v0 þ fP 1,P 2,P 3,10,0,0,0,0gT, v0 �
f1

f2

� �
, ð6:2Þ
where f1 and f2 are four-dimensional constant vectors to be determined from the requirement that the first
four components of v vanish on h = 0, and assume the constant values P1, P2, P3 and 10 respectively, on
h = p. Substituting Eq. (6.2) into (6.1) and using (3.22a), one obtains
STf1 � Lf2 ¼ 0, 1=2f1 þ fP 1,P 2,P 3,10gT ¼ 0:
Hence
v0 � �2
I4

L�1ST

� �
fP 1,P 2,P 3,10gT: ð6:3Þ
Eqs. (6.2) and (6.3) give the solution of the half space y P 0 with free boundary subjected to concentrated
forces and charge at the origin. The physical variables are given by
f�sxy ,� ry ,� syz,� Dy ,ex,v,x,w,x,� ExgT ¼ ð1=2pÞZk � i=zkZ�1v0, ð6:4aÞ

fr ,s ,s ,D ,u, ,e ,w, ,� E gT ¼ ð1=2pÞZk � il=zkZ�1v : ð6:4bÞ
x xy xz x y y y y 0



W.-L. Yin / International Journal of Solids and Structures 42 (2005) 2669–2687 2681
Furthermore, Eqs. (3.15), (3.23), (5.7) and (6.3) yield simple results in polar coordinates:
srh ¼ rh ¼ shz ¼ Dh ¼ 0, ð6:5aÞ

fer,uh,r,crz,� ErgT ¼ �ð1=2prÞQ4L
�1fP 1,P 2,P 3,10gT: ð6:5bÞ
Thus, the simple radial distribution of stress, well-known in isotropic elasticity, is also valid in plane aniso-
tropic elasticity regardless of material degeneracy.

On the positive x-axis, the four nonvanishing components of v are
fu,v,w,/gT ¼ �ð1=pÞ log½r�L�1fP 1,P 2,P 3,10gT: ð6:6aÞ

On the negative x-axis, one has
fu,v,w,/gT ¼ �ð1=pÞfL�1ST þ log½r�L�1gfP 1,P 2,P 3,10gT: ð6:6bÞ
Consider the special class of materials whose symmetry properties imply that the antiplane deformation is
completely uncoupled from the in-plane deformation and the electric effects, i.e., all coefficients of the poly-
nomials M12(l) and M23(l) vanish [see Eq. (I-2.20)]. Under the additional assumption of non-degenerate
materials, the solution of the half-space problem under a line load and a line charge at a boundary point
was given by Sosa and Castro (1994) using the Fourier transform method. Due to their use of the stiffness-
based formalism, the resulting expressions are significantly more complicated than our Eqs. (6.2)–(6.5), and
contain 16 real constants (Uk, Xk and Wk, in their notation) whose expressions in terms of basic constitutive
constants are too long to be shown in their paper.

The numerical solutions of Sosa and Castro were given for three materials including Lead Zirconate
Titanate (PZT-4). In an earlier paper, Sosa (1991) showed the material constants of PZT-4, and derived
the analytical expression of the characteristic equation for the special class of materials with uncoupled
antiplane behavior and with b16 = b26 = c11 = c12 = c26 = 0. The general characteristic equation in the
Appendix A of this paper reduces exactly to Sosa�s equation for this special class of material. The present
eigenvalues for PZT-4, ± 1.2185i and ±0.2006 ± 1.0699i, are slightly different from those of Sosa and Cas-
tro (1994), viz., ± 1.204i and ±0.2004 ± 1.069i. Sosa and Castro obtained ry = �0.551P2/r along the y-axis
of the half space subjected to a vertical force P2 at the origin, which is close to our solution ry = �0.5480P2/
r, and the magnitude of difference is comparable with those occurring in the eigenvalues.

The present solution involves only algebraic analysis, and is obtained straightforwardly from the infinite
space solution. Furthermore, it is valid for all classes of nondegenerate and degenerate piezoelectric mate-
rials and for more general types of loads including dislocations. Eqs. (5.6) and (6.5) show, in an exceedingly
lucid manner, the dependence of the solution upon the basic matrix Z, the intrinsic tensor C, and the mate-
rial eigenvalues, as well as the simple dependence of srh, rh, shz, Dh, er, uh,r, crz and �Er upon the angular
coordinate h.

If the origin is a center of dislocation rather than a center of force, and if the boundary conditions
u = v = w = / = 0 are prescribed on the negative x-axis whereas their values are u0, v0, w0 and 10 on the
positive x-axis, then Eq. (6.3) is replaced by
v0 � �2
L�1ST

I4

" #
fu0,v0,w0,/0g

T, ð6:7Þ
and the solutions of Eqs. (6.5a,b) are replaced by
er ¼ uh,r ¼ crz, ¼ Er ¼ 0, ð6:8aÞ

fsrh,rh,shz,DhgT ¼ �ð1=2prÞQ4H
�1fu0,v0,w0,10gT: ð6:8bÞ
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From Eq. (6.6a) one obtains
P 1uþ P 2vþ P 3w� 10/ ¼ �ð1=pÞ log½r�fP 1,P 2,P 3,10gh1,1,1,� 1iL�1fP 1,P 2,P 3,10gT, ð6:9Þ

where the concentrated loads are applied at the origin but u, v, w and / may be evaluated at any point in the
half space. As (x,y) moves close to the origin, �log[r] becomes positive and P1u + P2v + P3w � 10/ must be
positive since a negative 10 implies a positive Dy = �1,x accompanied by a negligibly small Dx in the vicin-
ity, which in turn imply Ey P 0. Hence the matrix h1,1,1,�1iL�1 is positive definite.
7. Interface cracks

Consider two half spaces of different piezoelectric materials, perfectly bonded along the positive x-axis,
and separated by a traction-free and charge-free crack along the negative x-axis. The material of the lower
half space has the base matrix Z and eigenvalues {l}. The corresponding entities of the upper region mate-
rial are Z 0 and {l 0}. Similar to Eqs. (3.15) and (3.22a), one defines the intrinsic tensor C 0 = Z 0h�iI4, iI4iZ 0�1

II and its 4 · 4 submatrices L 0, H 0 and S 0. Consider the solutions in the lower and upper half spaces given
respectively by
v ¼ Zkðxþ lyÞkkZ�1f, v0 ¼ Z0kðxþ l0yÞkkZ0�1f 0, ð7:1a;bÞ

where the undetermined constant k is generally complex and is called an eigenvalue of the interface crack.
Continuity condition on the positive x-axis implies f 0 = f, since the two kernel matrices of Eqs. (7.1a,b) both
reduce to the identity matrix. Then, on the upper and lower crack faces, one has
v0jh¼p ¼ Z0hexp½ipk�, exp½�ipk�iZ0�1f ¼ sin pkðctnpkI8 � C0IIÞf, ð7:2aÞ

vjh¼�p ¼ Zhexp½�ipk�, exp½ipk�iZ�1f ¼ sin pkðctnpkI8 þ CIIÞf, ð7:2bÞ
where Eq. (3.15) has been used. If the two crack faces are traction-free and charge-free, then
sin pk½I4,04
4�ðctnpkI8 � C0IIÞf ¼ 0, ð7:3aÞ

sin pk½I4,04
4�ðctnpkI8 þ CIIÞf ¼ 0: ð7:3bÞ

These equations are satisfied when k is an integer (i.e., sinpk = 0), but then Eqs. (7.1a,b) yield nonsingular
solutions that are polynomial functions of the coordinates. A different set of solutions of Eqs. (7.3a,b) is
determined by
Det
ctnpkI4 � S0T L0

ctnpkI4 þ ST �L

" #
¼ 0,
or, equivalently,
Det½ctnpkI4 � ðL�1 þ L0�1Þ�1ðSL�1 � S0L0�1Þ� ¼ 0, ð7:4Þ

i.e., ctnpk is an eigenvalue of the matrix V � (L�1 + L 0�1)�1 (SL�1 � S 0L 0�1). Eq. (7.4) is formally identical
to the characteristic equation of the bimaterial interface crack in 2-D anisotropic elasticity. However, S, L,
S 0 and L 0 in the present problem have the dimension 4 · 4, instead of 3 · 3. Hence Eq. (7.4) possesses addi-
tional roots compared to the same equation for 2-D elasticity.

A 3 · 3 skew-symmetric matrix is always singular but a 4 · 4 skew-symmetric matrix is generally nonsin-
gular. Let Tij be the elements of the skew-symmetric matrix T � SL�1 � S 0L 0�1. Then
Det½T� ¼ Det½SL�1 � S0L0�1� ¼ ðT 14T 23 þ T 12T 34 � T 13T 24Þ2 P 0: ð7:5Þ
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As pointed out in the last section, h1,1,1,�1i(L�1 + L 0�1) is a positive definite matrix. Hence Det
[L�1 + L 0�1] < 0 and Det [V] = Det[U]Det[T] 6 0 where U � (L�1 + L 0�1)�1. If q is an eigenvalue of V with
the eigenvector 1, then
ðUT� qI4Þ1 ¼ 0: ð7:6Þ

Since U is nonsingular, whether Eq. (7.6) may be satisfied by q = 0 depends on whether Det [T] = 0, i.e.,
whether T14 T23 + T12T34 � T13T24 = 0. Premultiplication of Eq. (7.6) by T yields (TU � qI4)T1 = 0. This
implies that TU � qI4 and its transpose �UT � qI4 are singular matrices. Therefore if V = UT has the
eigenvalue q, then it also has the eigenvalue �q. Hence one has the following characteristic equation asso-
ciated with (7.6):
Det½V� qI4� ¼ q4 � 2jq2 � r ¼ 0, r ¼ �Det½V� P 0 ð7:7Þ

where 2j is the second invariant of V. It follows that q2 is real: q2 = j ± (j2 ± r1/2). Hence there is one pair
of real roots and one pair of purely imaginary roots:
q1,2 ¼ �fj þ ðj2 þ rÞ1=2g1=2, q3,4 ¼ �if�j þ ðj2 þ rÞ1=2g1=2: ð7:8Þ
The results (7.7) and (7.8) were obtained by Suo et al. (1992) through a different derivation starting from the
general solution of a nondegenerate material, and it is shown here that they remain valid in all degenerate
cases.

If Det[T] = T14T23 + T12T34 � T13T24 = 0, then r = 0 and Eq. (7.8) reduces to q1,2 = ± (2j)1/2 and
q3,4 = 0. Then the eigenvalues of Eq. (7.4) are given by
k ¼ n� 1=2 ðdouble eigenvalues, n ¼ 1,2, . . .Þ, ð7:9aÞ

k ¼ n� 1=2� ð1=pÞcos�1f1=ð1þ 2jÞ1=2g ðn ¼ 1,2, . . .Þ: ð7:9bÞ

In the contrary case r > 0, the eigenvalues are
k ¼ n� 1=2� ð1=2pÞcos�1½f1� j � ðj2 þ rÞ1=2g=f1þ j þ ðj2 þ rÞ1=2g�, ð7:10aÞ

k ¼ n� 1=2� ði=2pÞ log½ð1þ fðj2 þ rÞ1=2 � jg1=2Þ=ð1� fðj2 þ rÞ1=2 � jg1=2Þ�: ð7:10bÞ

The parameters j and r are small compared to 1 if the piezoelectric effect is not severe. The inverse square
root singularity and the near crack tip oscillatory behavior associated with complex eigenvalues of Eq.
(7.10b) (with n = 1) are well known. However, Eq. (7.10a) implies that the order of the dominant singular-
ity is Re [k] < 1/2, which yields singularities of the stress and electric fields stronger than the inverse square
root singularity.

If the crack faces are rigidly fixed (u = v = w = 0) and grounded (/ = 0), then [I4,04·4] in Eqs. (7.3a,b)
must be replaced by [04·4, I4], so that the following characteristic equation replaces (7.4)
Det½ctnpkI4 � ðH�1 þH0�1Þ�1ðH0�1S0 �H�1SÞ� ¼ 0: ð7:11Þ

Hence ctnpk is an eigenvalue of the matrix (H�1 + H 0�1)�1(H 0�1S 0 � H�1S).

The characteristic Eqs. (7.4) and (7.11) are unaffected by material degeneracy. However, as usual, the
elasticity solutions (7.1a,b) in the two half spaces depend on degeneracy and on the type of material in
two essential ways: the base matrix Z of degenerate materials contains high-order eigenvectors, and the ker-
nel matrix has off-diagonal elements implying the participation of lower-order eigenvectors in higher order
eigensolutions.

Once the eigenvalues k have been determined, Eqs. (7.1a,b) and (7.3a,b) give the corresponding eigensolu-
tions of the interface crack. Boundary value problems involving the crack may be solved by combining
the eigensolutions to fit the data on a circular path enclosing the crack tip (such data are obtained easily by
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numerical methods since the exterior region is not appreciably affected by the crack tip singularity), as shown in
a recent work on the solution of anisotropic multimaterials wedges without piezoelectric effect (Yin, 2003c).
8. Conclusion

For all types of nondegenerate and degenerate piezoelectric materials, Eq. (4.5) gives the two-dimensional
general solution in terms of the basematrixZ and the kernelmatrix kfk containing four arbitrary analytic func-
tions of the complex variables x + ly. For the various classes of degenerate materials [classes (5)–(14) in the
classification of Section 4], the base matrix contains higher-order eigenvectors, and the kernel matrix is block
diagonal, where each diagonal block is given byEqs. (4.1) and (4.2) for a distinct eigenvalue l.WhenEq. (4.5) is
used to represent the solutions of boundary value problems, all field equations of elasticity are automatically
satisfied, and the analytic functions need only be chosen in such a way as to satisfy the boundary conditions.

For nondegenerate materials, orthogonality of eigenvectors implies that X = sZ,Zb is a diagonal matrix.
In the degenerate cases, X is block diagonal and its inverse matrix is easily obtained analytically. Then
C = Zh�iI4, iI4iX�1ZT gives the intrinsic matrix whose 4 · 4 submatrices L, H and S occur in many impor-
tant problems.

Although the higher-order eigenvectors require more elaborate analytical derivation than the zeroth-
order eigenvectors, they do not necessarily lead to more complicated solutions of boundary value problems,
because degeneracy implies a reduction in the number of distinct complex variables in the general solution.
This is particularly true when the multiple eigenvalues are ± i. When the piezoelectric coupling is absent
and the material is isotropic, 2-D Green�s function of the infinite space is a linear combination of terms
proportional to h, sinh, cosh, sin2h and cos2h, whereas the solutions for the materials with all distinct
eigenvalues involve logarithmic functions of various complex arguments. In some analytical methods of
solution, the choice of the mapping function from the domain boundary to a unit circle is also made easier
if the material has a multiple eigenvalue. Hence the familiar case with all distinct eigenvalues, though appar-
ently simple, may in fact yield more complex algebraic forms of expressions and solutions, making the anal-
ysis and computational implementation difficult compared to some degenerate cases. Suggestions have been
made by some authors to avoid the analysis of degenerate materials by replacing them with nondegenerate
materials having proximate eigenvalues. Aside from the questionable analytical and methodological justi-
fication (should one lay aside the entire subject of isotropic elasticity by solving the problems of isotropic
materials approximately using anisotropic material models with two or more distinct pairs of proximate
eigenvalues?), the suggested perturbation approach also fails to make the problem computationally simple.

The mathematical structure of the present theory exhibits complete symmetry with respect to the electric
displacement vector on the one hand, and the anti-plane shearing stress vector on the other. Hence the pre-
vious solutions of pure elasticity problems with coupled in-plane and out-of-plane behavior should lead,
through straightforward substitution of the variables and constitutive parameters, to the corresponding
solutions of the piezoelectric problem when such coupling is replaced by electro-mechanical coupling.

It is clear that the theories of 2-D anisotropic elasticity, piezoelectricity and coupled anisotropic lami-
nates show important common features in their essential mathematical structures, and this similarity results
in formally analogous expressions of the eigensolutions, the general solution, the intrinsic matrices and
Green�s function. A unified formalism has been developed to encompass the various theories in a general
and concise manner, including as its key results the eigenrelations, the characteristic equation for the eigen-
values, the derivative rule, orthogonality and the structure of the eigenspaces, intrinsic tensors, and Green�s
function of the infinite space, all given in common formal expression regardless of the context. The parti-
cular results for 2-D anisotropic elasticity, piezoelectricity theory and coupled anisotropic laminates emerge
as special cases in the unified formalism. Furthermore, similar results for a new or expanded theory (for
example, unsymmetric anisotropic laminates with piezoelectric effects) may be obtained likewise without
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repeating elaborate analysis. However, since the matrix M(l) has different dimensions and its elements
have different polynomial degrees in the various theories, the number of possible types of eigenvalues
and eigensolutions, as well as their detailed analytical expressions, also depend on the specific theory.
The determination of all such types and their combinations constitutes the central mathematical task in
obtaining the explicit expressions of the general solution and Green�s functions for a particular class of
materials in a specific theory. As seen in the present analysis, this task is significantly more complicated
for 2-D piezoelectricity in comparison with 2-D anisotropic elasticity and the theory of coupled anisotropic
laminates.

All analytical derivations contained in the present paper are easily implemented by using symbolic algebra.
For materials with all distinct eigenvalues, the Appendix A lists the algorithm inMathematica for obtaining
the analytical expressions and numerical results of material eigenvalues, eigenvectors, the matrices Z, X and
C, and Green�s function of the infinite space. For degenerate materials, the scheme of differentiation to gen-
erate higher-order eigenvectors from the zeroth-order eigenvectors is easily formulated. It is not difficult to
modify the algorithm of the Appendix A for adoption to the various classes of degenerate materials.
Appendix A. Mathematica program for the case of distinct eigenvalues

(A) Analytical expressions
bb = {{b11, b12, b16, b15, b14}, {b12, b22, b26, b25, b24}, {b16, b26, b66, b56, b46},
{b15, b25, b56, b55, b45}, {b14, b24, b46, b45, b44}};
cc = {c11, c12, c16, c15, c14}, {c21, c22, c26, c25, c24};
ee = {e11, e12}, {e12, e22};
mat = Transpose[Join[Transpose[Join[bb, cc]],Transpose[Join[Transpose[cc], �ee]]]];
si = {{�s^2,0,0}, {�1,0,0}, {s,0,0}, {0, s, 0}, {0,�1,0}, {0,0, s}, {0,0,�1}};
mm = Transpose[si].mat.si;
dt = Det[mm];
adj = Minors[mm,2];
j1 = {{�s,0,0}, {1,0,0}, {0,1,0}, {0,0,1}};
j3 = {{1,0,0,0,0,0,0}, {�s, 0,1,0,0,0,0}, {0,0,0,1,0,0,0}, {0,0,0,0,0,1,0}};
j2 = j3.mat.si;
jj = Join[j1,j2];
vec3 = jj.adj;
ii8 = Join[Transpose[Join[0*IdentityMatrix[4],IdentityMatrix[4]]]],

Transpose[Join[IdentityMatrix[4],0*IdentityMatrix[4]]];

(*List of symbols and the corresponding equations*)
ee, cc, bb Eqs. (I-2.10a,b,c)
mat Eq. (I-2.19c)
si Eq. (I-2.15b)
mm Eq. (I-2.19b)
dt Eq. (I-2.21)
adj Adjoint matrix of mm
j1, j3 Eqs. (I-2.22a,b)
j2, jj Eqs. (I-2.22c,d)
ii8 Eq. (I-2.28)
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(B) Expressions for PZT-4 (the dimension of Z, X and C is reduced from 8 · 8 to 6 · 6)
ii6 = Join[Transpose[Join[0*IdentityMatrix[3],IdentityMatrix[3]]],

Transpose[Join[IdentityMatrix[3],0*IdentityMatrix[3]]]];
bbb = bb/.{b11->8.205, b12->�3.144, b16->0, b15->0, b14->0, b22->7.495, b26->0,
b25->0, b24->0, b66->19.3, b56->0, b46->0, b55->0, b45->0, b44->0};

ccc = cc/.{c11->0, c12->0, c16->39.4, c15->0, c14->0,
c21->16.62, c22->23.96, c26->0, c25->0, c24->0};

eee = ee/.{e11->76.6, e12->0, e22->98.2};
mat00 = Transpose[Join[Transpose[Join[bbb,ccc]],Transpose[Join[Transpose[ccc],�eee]]]];
mat0 = mat00[[{1,2,3,6,7}, {1,2,3,6,7}]];
si0 = si[[{1,2,3,6,7}, {1,3}]];
mm0 = Transpose[si0].mat0.si0;
dt0 = Det[mm0];
adj0 = {{mm0[[2, 2]], �mm0[[1, 2]]}, {�mm0[[1,2]], mm0[[1,1]]}};
j10 = {{�s,0}, {1,0}, {0,1}};
j30 = {{1,0,0,0,0}, {�s, 0,1,0,0}, {0,0,0,1,0}};
j20 = j30.mat0.si0;
jj0 = Join[j10,j20];
sol = NSolve[dt0==0,s];
rs = {s/.sol[[4]], s/.sol[[2]], s/.sol[[6]]};
Do[If[Im[rs[[k]]] < 0., rs[[k]] = Conjugate[rs[[k]]],],{k,3}];
Do[If[Abs[Re[rs[[k]]]] < 0.000001, rs[[k]] = I*Im[rs[[k]]],],{k,3}];
eta0 = Table[adj0/.s-> rs[[k]],{k,3}];
ind = {0,0,0};
Do[If[Abs[eta0[[i, 1,1]]] > Abs[eta0[[i, 2,2]]],ind[[i]] = 1,ind[[i]] = 2],{i, 3}];
eta = Table[eta0[[k,ind[[k]]]],{k,3}];
vv = Table[(jj0/.s > rs[[k]]).eta[[k]],{k,3}];
zzptr = Table[vv[[k]],{k,3}];
zz = Transpose[Join[zzptr,Conjugate[zzptr]]];
omeg3 = DiagonalMatrix[Table[vv[[k]].ii6.vv[[k]],{k,3}]];
omeg6 = Join[Transpose[Join[omeg3,0*IdentityMatrix[3]]];
Transpose[Join[0*IdentityMatrix[3],Conjugate[omeg3]]]];

iomeg6 = Inverse[omeg6];
izz = iomeg6.Transpose[zz].ii6;
gg = 2*Im[Transpose[zzptr].iomeg3.zzptr];
ll = Chop[-gg[[{1,2,3},{1,2,3}]]];
ss = Chop[gg[[{4,5,6},{1,2,3}]]];
hh = Chop[gg[[{4,5,6},{4,5,6}]]];
npi = N[Pi];
kerdiag1[t_]: = Table[Log[Cos[t] + rs[[k]]*Sin[t]],{k,3}];
kerdiag2[t_]: = Table[Log[Cos[t] + Conjugate[rs[[k]]]*Sin[t]],{k,3}];
kergrinf[t_]: = DiagonalMatrix[Join[kerdiag1[t],kerdiag2[t]]];
grinf[r_,t_]: = (0.5/npi)*Log[r]*gg.ii6 + (0.5/npi)*gg.ii6.zz.kerginf[t_].izz;
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(* Symbols *)
mm0 M(l) Eq. (I-2.19b)
rs, zzptr {l?},Z?
omeg3,omeg6 X?,X Eqs. (3.2b,c)
iomeg6 X�1 Eq. (3.4)
zz, izz Z, Z�1 Eqs. (3.2a), (3.5)
gg C Eq. (3.15)
ll,hh, ss L, H, S Eq. (3.22a)
grinf[r, t] (1/2p)G1 Eq. (5.6)
(C) Numerical results for PZT-3
mm0 = {{7.495 + 16.156*s^2 � s^2*(3.144 8.205*s^2), 23.96 + 22.78*s^2},

{23.96 + 22.78*s^2, �98.2 � 76.60*s^2}};
rs = {1.218486708382853*I, �0.200608697306888 + 1.069879022802832*I,

0.2006086973068879 + 1.069879022802832*I};
zzptr = {{�18.92161*I, 15.52878, 9.86169, 401.8960, 348.92583*I, �174.94028*I},
{32.44963 + 21.149932*I, �13.60317 + 32.88086*I, 1.198170 + 9.778408*I,

�261.92835 ± 515.93635*I, �548.49532 � 51.242350*I, �458.73637 �781.23947*I},
{�32.44963 + 21.149932*I, �13.60317 � 32.88086*I, 1.198170 � 9.778408*I,
�261.92835 515.93635*I, 548.49532 � 51.242350*I, 458.73637 � 781.23947*I}};

omeg3 = {{�7822.66791*I, 0, 0}, {0, �6351.3916 � 23115.0640*I, 0},
{0, 0, 6351.3916 �23115.0640*I}};

iomeg3 = {{�0.0001278336*I, 0, 0}, {0, �0.0000110527 + 0.00004022485*I, 0},
{0, 0, 0.0000110527 + 0.00004022485*I}};

ll = {{0.05477005, 0, 0}, {0, 0.04298086, 0.01106335}, {0, 0.01106335, �0.008674657}};
hh = {{21.45349, 0, 0}, {0, 14.37115, 29.66584}, {0, 29.66584, �103.856287}};
ss = {{0, 0.1303836, 0.2369702}, {�0.4150223, 0, 0}, {0.9668775, 0, 0}};
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